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Outline

Introduction

• Portable approach to JIT compilation for dynamically typed
scripting languages
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Motivation

• Scripting languages growing fast. Run slower than staticly
typed languages (type checks)

• Interpreters for scripting languages are portable

• Lua is a popular portable scripting language (ANSI C)
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Motivation

Motivation

• JIT helps speed, breaks portability

• Past JIT for scripting only focused on whole method
compilation — ‘big bang’ pattern of program performance
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Motivation

Our Aims

• Create a profiling mechanism to profile running programs at
multiple levels of granularity

• Allow the use of a native C compiler as a JIT compiler

• Hiding the cost of native C compiler using parallel approach
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VM Execution Flow
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Profiling Architecture

VM Execution Flow

Profiling Architecture

• Modified version of regular Lua interpreter

• Profile count of each set of types for each function call and
backward branch (profile signature)

• Each function stores signature list

• Function call/backward branch creates new entry in list,
increments profile count
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Profile Signatures

Profile signature
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Profiling Architecture

Thread Communication

Thread Communication

• Producer/consumer communication

• Use link flag to signal compilation completed
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Profiling Architecture

Thread Communication

Thread Communication

• Scripting languages typically implement automatic memory
management

• Danger of function being garbage collected

• Implemented a queueing data structure accessible to VM’s
garbage collector

• Queue managed by both threads
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Data Flow Analysis

Type Inference

Type Inference

• Types taken from signature

• Simple interprocedural worklist

• Type inference identifies a type for each variable at every
execution point from a set of known inputs

• Outputs a flow graph

• Types of any Lua primitive type, or unknown
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Data Flow Analysis

Type Inference

Type Inference

• Iterative algorithm infers types from predecessor nodes

• Any conflicts in the sets results in a type becoming unknown

• Table structure values always unknown
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Data Flow Analysis

Type Inference Performance

Type Inference Performance
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Data Flow Analysis

Type Inference Performance

Type Inference Performance
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Data Flow Analysis

Type Inference Performance

Type Inference Performance
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Optimizations

Optimizations

• Code generator performs linear pass

• Specialized implementation for each virtual instruction

• Specialization performed using operand values decoded from
opcode
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Optimizations

Control Flow and Interpreter Overhead

Control Flow and Interpreter Overhead

• Instruction operards access using bit operations, virtual
registers referenced after decode

• Code generation outputs decoded implementations of all
instructions

• Control flow generation using direct branching (goto)
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Optimizations

Type Check Removal

Type Check Removal

• 3 kinds of type check:
• Artithmetic/string operations a = b op c
• Conditional branches
• Table accesses — table+key
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Optimizations

Lua Register Variables to Native C Variables

Lua Register Variables to Native C Variables

• Lots of overhead in accessing Lua variable

• Code generator generates code to directly access C variables
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Optimizations

Lua Function Calls

Lua Function Calls

• Naively, call from a JITed Lua function to another JITed Lua
function requires lookup

• Code generator generates direct calls to compiled Lua
functions with necessary guards
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Experimental Evaluation

Benchmarks

• No real standard for scripting language benchmarks

• Compared against LuaJIT — extremely fast x86 JIT compiler
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Experimental Evaluation

Micro Benchmarks Performance

Micro Benchmarks Performance
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Application Performance

Application Performance
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Conclusions

Conclusions

• Type analysis at these levels of granularity produces a large
number of known types

• Type data collected has shown variables fetched from tables
to be the most common source of unknown types

• Demonstrated the practicalities of using external compilers in
JIT systems
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Discussion

Discussion

Three weaknesses with this system:

• Cost of gathering types expensive

• Not knowing what comes out of table
• Could keep one type for the table, updating type on store

• Calls are expensive
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Future Work

• Dynamic intermediate representation

• Full type knowledge of all live local variables

• Interpreter optimisation as well as code generation
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Future Work

Thanks

Questions?

30 / 30


	Outline
	Motivation
	Profiling Architecture
	VM Execution Flow
	Profile Signatures
	Thread Communication

	Data Flow Analysis
	Type Inference
	Type Inference Performance

	Optimizations
	Control Flow and Interpreter Overhead
	Type Check Removal
	Lua Register Variables to Native C Variables
	Lua Function Calls

	Experimental Evaluation
	Micro Benchmarks Performance
	Application Performance

	Conclusions
	Discussion
	Future Work

