
Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Portable Just-in-time Specialization of
Dynamically Typed Scripting Languages

Kevin Williams, Jason McCandless, David Gregg

Trinity College Dublin

October 5, 2011

1 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Outline

Introduction

• Portable approach to JIT compilation for dynamically typed
scripting languages

2 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Outline

1 Motivation

2 Profiling Architecture

3 Data Flow Analysis

4 Optimizations

5 Experimental Evaluation

6 Conclusions

7 Discussion

8 Future Work
3 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Motivation

Motivation

• Scripting languages growing fast. Run slower than staticly
typed languages (type checks)

• Interpreters for scripting languages are portable

• Lua is a popular portable scripting language (ANSI C)

4 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Motivation

Motivation

• JIT helps speed, breaks portability

• Past JIT for scripting only focused on whole method
compilation — ‘big bang’ pattern of program performance

5 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Motivation

Our Aims

• Create a profiling mechanism to profile running programs at
multiple levels of granularity

• Allow the use of a native C compiler as a JIT compiler

• Hiding the cost of native C compiler using parallel approach

6 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Profiling Architecture

VM Execution Flow

VM Execution Flow

7 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Profiling Architecture

VM Execution Flow

Profiling Architecture

• Modified version of regular Lua interpreter

• Profile count of each set of types for each function call and
backward branch (profile signature)

• Each function stores signature list

• Function call/backward branch creates new entry in list,
increments profile count

8 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Profiling Architecture

Profile Signatures

Profile signature

next

signature

instruction

index

number of

locals

local

types

function

pointer

profile

count

link flag

State of signature triggers compilation, linking and dispatch of JIT
functions

9 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Profiling Architecture

Profile Signatures

Profile signature

next

signature

instruction

index

number of

locals

local

types

function

pointer

profile

count

link flag

State of signature triggers compilation, linking and dispatch of JIT
functions

10 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Profiling Architecture

Profile Signatures

Profile signature

next

signature

instruction

index

number of

locals

local

types

function

pointer

profile

count

link flag

State of signature triggers compilation, linking and dispatch of JIT
functions

11 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Profiling Architecture

Thread Communication

Thread Communication

• Producer/consumer communication

• Use link flag to signal compilation completed

12 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Profiling Architecture

Thread Communication

Thread Communication

• Scripting languages typically implement automatic memory
management

• Danger of function being garbage collected

• Implemented a queueing data structure accessible to VM’s
garbage collector

• Queue managed by both threads

13 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Data Flow Analysis

Type Inference

Type Inference

• Types taken from signature

• Simple interprocedural worklist

• Type inference identifies a type for each variable at every
execution point from a set of known inputs

• Outputs a flow graph

• Types of any Lua primitive type, or unknown

14 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Data Flow Analysis

Type Inference

Type Inference

• Iterative algorithm infers types from predecessor nodes

• Any conflicts in the sets results in a type becoming unknown

• Table structure values always unknown

15 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Data Flow Analysis

Type Inference Performance

Type Inference Performance

UNKNOWN
THREAD
USERDATA
FUNCTION
TABLE
STRING
NUMBER
LIGHTUSERDATA
BOOLEAN
NIL

 0%

 20%

 40%

 60%

 80%

 100%
D

el
ta

B
lu

e

L
Z

78

M
ar

ko
v

M
az

e

Pa
cm

an

R
ic

ha
rd

s

Y
ue

lia
ng

m
ea

n

Pe
rc

en
ta

ge
 o

f
to

ta
l o

pe
ra

nd
s

us
ed

Benchmark

16 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Data Flow Analysis

Type Inference Performance

Type Inference Performance

CONTROLFLOW UNKNOWN
FUNCTION UNKNOWN
TABLE UNKNOWN

 0%

 20%

 40%

 60%

 80%

 100%

D
el

ta
B

lu
e

L
Z

78

M
ar

ko
v

M
az

e

Pa
cm

an

R
ic

ha
rd

s

Y
ue

lia
ng

m
ea

nPe
rc

en
ta

ge
 o

f
to

ta
l u

nk
no

w
n

op
er

an
d

ty
pe

s

Benchmark

17 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Data Flow Analysis

Type Inference Performance

Type Inference Performance

ttype
ttisthread
ttisuserdata
ttisfunction
ttistable
ttisstring
ttisnumber
ttislightuserdata
ttisboolean
ttisnil

 0%

 20%

 40%

 60%

 80%

 100%
st

d jit st
d jit st
d jit st
d jit st
d jit st
d jit st
d jit st
d jit

Pe
rc

en
ta

ge
 o

f
to

ta
l t

yp
e

ch
ec

ks

Benchmark
DeltaBlue LZ78 Markov Maze Pacman RichardsYueliang mean

18 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Optimizations

Optimizations

• Code generator performs linear pass

• Specialized implementation for each virtual instruction

• Specialization performed using operand values decoded from
opcode

19 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Optimizations

Control Flow and Interpreter Overhead

Control Flow and Interpreter Overhead

• Instruction operards access using bit operations, virtual
registers referenced after decode

• Code generation outputs decoded implementations of all
instructions

• Control flow generation using direct branching (goto)

20 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Optimizations

Type Check Removal

Type Check Removal

• 3 kinds of type check:
• Artithmetic/string operations a = b op c
• Conditional branches
• Table accesses — table+key

21 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Optimizations

Lua Register Variables to Native C Variables

Lua Register Variables to Native C Variables

• Lots of overhead in accessing Lua variable

• Code generator generates code to directly access C variables

22 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Optimizations

Lua Function Calls

Lua Function Calls

• Naively, call from a JITed Lua function to another JITed Lua
function requires lookup

• Code generator generates direct calls to compiled Lua
functions with necessary guards

23 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Experimental Evaluation

Benchmarks

• No real standard for scripting language benchmarks

• Compared against LuaJIT — extremely fast x86 JIT compiler

24 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Experimental Evaluation

Micro Benchmarks Performance

Micro Benchmarks Performance

 0

 2

 4

 6

 8

 10
(b

)
S

pe
ed

up
, X lua-5.1.4

luajit
Multi-Thread

 0

 5

 10

 15

 20

 25

 30

bi
na

ry
-t

re
es

fa
nn

ku
ch

fa
st

a
k-

nu
cl

eo
tid

e
m

an
de

lb
ro

t
m

an
de

l-t
on

um
n-

bo
dy

ns
ie

ve
ns

ie
ve

-b
its

pa
rt

ia
l-s

um
s

re
cu

rs
iv

e
re

ge
x-

dn
a

sp
ec

tr
al

-n
or

m
su

m
-f

ile
th

re
ad

-r
in

g
A

ck
-F

un
ct

io
n

A
rr

ay
-A

cc
es

s
C

ou
nt

Li
ne

W
rd

C
hr

E
xc

ep
M

ec
ha

n
F

ib
-N

um
be

rs
H

as
h-

A
cc

es
s

H
as

he
s,

P
ar

tII
H

ea
ps

or
t

M
at

rix
-M

ul
t

N
es

te
d-

Lo
op

s
O

bj
ec

t-
In

st
R

an
do

m
N

um
G

en
R

ev
er

se
F

ile
S

ie
ve

E
ra

th
os

te
ne

s
S

ta
t M

om
en

ts
S

tr
in

g
C

on
ca

t
W

or
dF

re
qC

ou
nt

(a
)

S
ec

on
ds

25 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Experimental Evaluation

Application Performance

Application Performance

 0

 1

 2

 3

 4

 5

 6

(b
)

S
pe

ed
up

, X

lua-5.1.4
luajit

Multi-Thread

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

M
ar

ko
v

LZ
78

D
el

ta
bl

ue

R
ic

ha
rd

s

M
az

e

P
ac

m
an

Y
ue

lia
ng

(a
)

S
ec

on
ds

26 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Conclusions

Conclusions

• Type analysis at these levels of granularity produces a large
number of known types

• Type data collected has shown variables fetched from tables
to be the most common source of unknown types

• Demonstrated the practicalities of using external compilers in
JIT systems

27 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Discussion

Discussion

Three weaknesses with this system:

• Cost of gathering types expensive

• Not knowing what comes out of table
• Could keep one type for the table, updating type on store

• Calls are expensive

28 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Future Work

Future Work

• Dynamic intermediate representation

• Full type knowledge of all live local variables

• Interpreter optimisation as well as code generation

29 / 30

Portable Just-in-time Specialization of Dynamically Typed Scripting Languages

Future Work

Thanks

Questions?

30 / 30

	Outline
	Motivation
	Profiling Architecture
	VM Execution Flow
	Profile Signatures
	Thread Communication

	Data Flow Analysis
	Type Inference
	Type Inference Performance

	Optimizations
	Control Flow and Interpreter Overhead
	Type Check Removal
	Lua Register Variables to Native C Variables
	Lua Function Calls

	Experimental Evaluation
	Micro Benchmarks Performance
	Application Performance

	Conclusions
	Discussion
	Future Work

